\(\int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [189]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 228 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (292 A+345 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {4 a^3 (292 A+345 B) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[Out]

2/9*a*A*(a+a*cos(d*x+c))^(3/2)*sin(d*x+c)/d/cos(d*x+c)^(9/2)+2/315*a^3*(124*A+135*B)*sin(d*x+c)/d/cos(d*x+c)^(
5/2)/(a+a*cos(d*x+c))^(1/2)+2/315*a^3*(292*A+345*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)+4/315
*a^3*(292*A+345*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)+2/21*a^2*(4*A+3*B)*sin(d*x+c)*(a+a*cos
(d*x+c))^(1/2)/d/cos(d*x+c)^(7/2)

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3054, 3059, 2851, 2850} \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 a^3 (292 A+345 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {4 a^3 (292 A+345 B) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}+\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^{3/2}}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(2*a^3*(124*A + 135*B)*Sin[c + d*x])/(315*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*a^3*(292*A + 345
*B)*Sin[c + d*x])/(315*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]) + (4*a^3*(292*A + 345*B)*Sin[c + d*x])/(
315*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]) + (2*a^2*(4*A + 3*B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])
/(21*d*Cos[c + d*x]^(7/2)) + (2*a*A*(a + a*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2))

Rule 2850

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2}{9} \int \frac {(a+a \cos (c+d x))^{3/2} \left (\frac {3}{2} a (4 A+3 B)+\frac {1}{2} a (4 A+9 B) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {4}{63} \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {1}{4} a^2 (124 A+135 B)+\frac {1}{4} a^2 (76 A+99 B) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{105} \left (a^2 (292 A+345 B)\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (292 A+345 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {1}{315} \left (2 a^2 (292 A+345 B)\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^3 (124 A+135 B) \sin (c+d x)}{315 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 a^3 (292 A+345 B) \sin (c+d x)}{315 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {4 a^3 (292 A+345 B) \sin (c+d x)}{315 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {2 a^2 (4 A+3 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{21 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^{3/2} \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 126, normalized size of antiderivative = 0.55 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} (1454 A+1395 B+(1396 A+1215 B) \cos (c+d x)+2 (803 A+870 B) \cos (2 (c+d x))+292 A \cos (3 (c+d x))+345 B \cos (3 (c+d x))+292 A \cos (4 (c+d x))+345 B \cos (4 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{630 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Integrate[((a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(a^2*Sqrt[a*(1 + Cos[c + d*x])]*(1454*A + 1395*B + (1396*A + 1215*B)*Cos[c + d*x] + 2*(803*A + 870*B)*Cos[2*(c
 + d*x)] + 292*A*Cos[3*(c + d*x)] + 345*B*Cos[3*(c + d*x)] + 292*A*Cos[4*(c + d*x)] + 345*B*Cos[4*(c + d*x)])*
Tan[(c + d*x)/2])/(630*d*Cos[c + d*x]^(9/2))

Maple [A] (verified)

Time = 7.87 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.58

method result size
default \(\frac {2 a^{2} \sin \left (d x +c \right ) \left (584 A \left (\cos ^{4}\left (d x +c \right )\right )+690 B \left (\cos ^{4}\left (d x +c \right )\right )+292 A \left (\cos ^{3}\left (d x +c \right )\right )+345 B \left (\cos ^{3}\left (d x +c \right )\right )+219 A \left (\cos ^{2}\left (d x +c \right )\right )+180 B \left (\cos ^{2}\left (d x +c \right )\right )+130 A \cos \left (d x +c \right )+45 B \cos \left (d x +c \right )+35 A \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{315 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {9}{2}}}\) \(133\)
parts \(\frac {2 A \sin \left (d x +c \right ) \left (584 \left (\cos ^{4}\left (d x +c \right )\right )+292 \left (\cos ^{3}\left (d x +c \right )\right )+219 \left (\cos ^{2}\left (d x +c \right )\right )+130 \cos \left (d x +c \right )+35\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{315 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {9}{2}}}+\frac {2 B \sin \left (d x +c \right ) \left (46 \left (\cos ^{3}\left (d x +c \right )\right )+23 \left (\cos ^{2}\left (d x +c \right )\right )+12 \cos \left (d x +c \right )+3\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{21 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}\) \(162\)

[In]

int((a+cos(d*x+c)*a)^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

2/315*a^2/d*sin(d*x+c)*(584*A*cos(d*x+c)^4+690*B*cos(d*x+c)^4+292*A*cos(d*x+c)^3+345*B*cos(d*x+c)^3+219*A*cos(
d*x+c)^2+180*B*cos(d*x+c)^2+130*A*cos(d*x+c)+45*B*cos(d*x+c)+35*A)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/cos
(d*x+c)^(9/2)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.59 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2 \, {\left (2 \, {\left (292 \, A + 345 \, B\right )} a^{2} \cos \left (d x + c\right )^{4} + {\left (292 \, A + 345 \, B\right )} a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (73 \, A + 60 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (26 \, A + 9 \, B\right )} a^{2} \cos \left (d x + c\right ) + 35 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{315 \, {\left (d \cos \left (d x + c\right )^{6} + d \cos \left (d x + c\right )^{5}\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

2/315*(2*(292*A + 345*B)*a^2*cos(d*x + c)^4 + (292*A + 345*B)*a^2*cos(d*x + c)^3 + 3*(73*A + 60*B)*a^2*cos(d*x
 + c)^2 + 5*(26*A + 9*B)*a^2*cos(d*x + c) + 35*A*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)
/(d*cos(d*x + c)^6 + d*cos(d*x + c)^5)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 533 vs. \(2 (198) = 396\).

Time = 0.35 (sec) , antiderivative size = 533, normalized size of antiderivative = 2.34 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {8 \, {\left (\frac {15 \, {\left (\frac {21 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {56 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {36 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {8 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}}\right )} B {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {9}{2}} {\left (\frac {2 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {\sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + 1\right )}} + \frac {{\left (\frac {315 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {945 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {1449 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {1287 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac {572 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {104 \, \sqrt {2} a^{\frac {5}{2}} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}}\right )} A {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{3}}{{\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {11}{2}} {\left (-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {11}{2}} {\left (\frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {\sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + 1\right )}}\right )}}{315 \, d} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

8/315*(15*(21*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(d*x + c) + 1) - 56*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c
) + 1)^3 + 63*sqrt(2)*a^(5/2)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 36*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x
 + c) + 1)^7 + 8*sqrt(2)*a^(5/2)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9)*B*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 +
 1)^2/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(9/2)*(2*sin(d*x + c
)^2/(cos(d*x + c) + 1)^2 + sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 1)) + (315*sqrt(2)*a^(5/2)*sin(d*x + c)/(cos(
d*x + c) + 1) - 945*sqrt(2)*a^(5/2)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 1449*sqrt(2)*a^(5/2)*sin(d*x + c)^5/
(cos(d*x + c) + 1)^5 - 1287*sqrt(2)*a^(5/2)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 572*sqrt(2)*a^(5/2)*sin(d*x
+ c)^9/(cos(d*x + c) + 1)^9 - 104*sqrt(2)*a^(5/2)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11)*A*(sin(d*x + c)^2/(co
s(d*x + c) + 1)^2 + 1)^3/((sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(11/2)*(-sin(d*x + c)/(cos(d*x + c) + 1) + 1)^
(11/2)*(3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + sin(d*x + c)^6/(cos(d*
x + c) + 1)^6 + 1)))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 8.70 (sec) , antiderivative size = 647, normalized size of antiderivative = 2.84 \[ \int \frac {(a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {\sqrt {a+a\,\left (\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}\right )}\,\left (\frac {a^2\,\left (292\,A+345\,B\right )\,4{}\mathrm {i}}{315\,d}-\frac {a^2\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\left (2\,A+5\,B\right )\,4{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\left (2\,A+5\,B\right )\,4{}\mathrm {i}}{3\,d}+\frac {a^2\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\left (24\,A+25\,B\right )\,4{}\mathrm {i}}{5\,d}-\frac {a^2\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\left (24\,A+25\,B\right )\,4{}\mathrm {i}}{5\,d}+\frac {a^2\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\left (146\,A+155\,B\right )\,4{}\mathrm {i}}{35\,d}-\frac {a^2\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\left (146\,A+155\,B\right )\,4{}\mathrm {i}}{35\,d}-\frac {a^2\,{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\left (292\,A+345\,B\right )\,4{}\mathrm {i}}{315\,d}\right )}{\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,3{}\mathrm {i}+d\,x\,3{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,4{}\mathrm {i}+d\,x\,4{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+6\,{\mathrm {e}}^{c\,5{}\mathrm {i}+d\,x\,5{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,6{}\mathrm {i}+d\,x\,6{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+4\,{\mathrm {e}}^{c\,7{}\mathrm {i}+d\,x\,7{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,8{}\mathrm {i}+d\,x\,8{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}+{\mathrm {e}}^{c\,9{}\mathrm {i}+d\,x\,9{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-c\,1{}\mathrm {i}-d\,x\,1{}\mathrm {i}}}{2}+\frac {{\mathrm {e}}^{c\,1{}\mathrm {i}+d\,x\,1{}\mathrm {i}}}{2}}} \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^(11/2),x)

[Out]

((a + a*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2))^(1/2)*((a^2*(292*A + 345*B)*4i)/(315*d) - (a^2*exp(c*
3i + d*x*3i)*(2*A + 5*B)*4i)/(3*d) + (a^2*exp(c*6i + d*x*6i)*(2*A + 5*B)*4i)/(3*d) + (a^2*exp(c*4i + d*x*4i)*(
24*A + 25*B)*4i)/(5*d) - (a^2*exp(c*5i + d*x*5i)*(24*A + 25*B)*4i)/(5*d) + (a^2*exp(c*2i + d*x*2i)*(146*A + 15
5*B)*4i)/(35*d) - (a^2*exp(c*7i + d*x*7i)*(146*A + 155*B)*4i)/(35*d) - (a^2*exp(c*9i + d*x*9i)*(292*A + 345*B)
*4i)/(315*d)))/((exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*1i + d*x*1i)*(exp(- c*1i - d*x*1
i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*2i + d*x*2i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2
) + 4*exp(c*3i + d*x*3i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 6*exp(c*4i + d*x*4i)*(exp(- c
*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 6*exp(c*5i + d*x*5i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*
1i)/2)^(1/2) + 4*exp(c*6i + d*x*6i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + 4*exp(c*7i + d*x*7
i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2) + exp(c*8i + d*x*8i)*(exp(- c*1i - d*x*1i)/2 + exp(c*
1i + d*x*1i)/2)^(1/2) + exp(c*9i + d*x*9i)*(exp(- c*1i - d*x*1i)/2 + exp(c*1i + d*x*1i)/2)^(1/2))